
UD-Ai36 194 A SYSTOLIC DESIGN RULE CHECKER(U) MINNESOTA UNIV i/i
MINNEAPOLIS DEPT OF COMPUTER SCIENCE R KANE ET AL.
JUL 83 TR-83-13 N00814-80-C-0650

UNCLASSIFIED F/G 12/1 NL

IauuuuuuuIuIEIIEIIIIIEIII
Ehhll

I,.25 i,_ , ... *

liii! 1...

NATINAL BUREAU OF STANDARDS-1963-A

_ . . ' 8 _ , E : : - . - - ; - - = .' - . . , - . . o - . - - , . 1 i , - - . r e ,v ,=, , , . . . -

f F 9 11s l
*'A P19lees e

F!f # e l fF 9 -0 8

$ 4 sF , o ')cFt, e l

C&9~~~ 21Ct tvzl , r921,tit 19
C 461117 V; ;L6tet I ~1l,6~ t ;ccto

CA; Cct 1
9. t gi

I~~~;1 Roli L 0 -999--990

- - , - -

rd ;0. We
t: t~ so a' . vto roe -

we I I I lep
sel

N TIS G~R A K
c~

DTIC TAB 10001
UnannounCedJustifioatio Computer Science Department

~t i iuton/By bInstitute of Technology _

* vailabilityCoe 136 Lind Hall

IAvail and/or University of Minnesota A

Minneapolis, Minnesota 55455

A5,a

-i

"A Systolic Design Rule Checker

by =

Rajiv Kane

SartaJ Sahni

Technical Report 83-13

July 1983

Contract N00014-80-C.0650

DTICS LECTE~
DEC 19 1983

DISTRIBUTIxON srATE1VM:1NT-

Approved for public release; I
Dist,,oution Unlimited I

Z*-*,..A. .Y&.X r. . P-77% 77 t. 777 777' "A -'S

A Systolic Design Rule Checker"

kRajijv Kane and Sartaj Sabni
University of Minnesota

Abstmrct

,WY~edevelop a systolic design rule checker (SDRC) for rectilinear geometries. This
SDRC reports all width and spacing violations. It is expected to result in a
signiftcant speed up of the design rule check phase of chip design.

Kvrd and Phraues

Design Rule Checks, feature width, spacing, rectilinear geometries, systolic sys-
temns.

*Ns research war supported rnpar. by the Office of Naval Research -=der contract '(OOO1443O-
C-O0lO and Ln ;art by 5fcroeleo-cmics and :ormsato Sciences Cent.er at the U~iver+ty of Himi...-

ILL

L Intmudanl

Rapid advances in technology are mai-dn it possible to fabricate circuits of
an ever increasing compLexity. This increase in circuit complenty poses a
severe challenge to the algorithms presently in use in design automation tools.

One of the ways to meet the challenge is to develop new computer architechures
capable of running these design automation algorithms efficiently. Another
approach is to develop yet faster algorithms.

Several new architectures and corresponding algorithms have recently
been proposed for design automation. Blank et al [BL~a';i] describe a bit map
processor architecture suitable for boolean operations. wire routing using Lee's

algorithm, and for some design rule check (DRC) functions such as shrink and
expand. Mudge et al (MUDG82] describe Cytocomputer architecture adapted for

DRC and Lee type wire routing. Yet another DRC architecture is described in

CSIB2Ea]. Some other references for special purpose architectures and associ-
ated algorithsn for wire routing are DAMM82] and .NAIR 8I. A parallel process-
log approach for logic module placement has been developed by Ueda et al
[LIEDA]83. Simulation has also been the focus of several new architectural stu-

dies. The most popular such development is the Yorktown Simulation Engine

(,PF182]. fDb4N82J and [ElRON82]). Another logic simulation machine is
described by Abremovtai at al CABRA82]. In this paper, we shall be concerned
with the design of a systolic system for design rule checks. Our design differs
from all earlier work on special purpose architectures for design automation in

that ours is the drat systolic design. Of course, systolic designs have been stu-
died for quite some time. A valuable reference is *UNG82]. Our systolic system
for DRC's differ from earlier work on hardware assisted DRC's In that it is edge
based rather than bit map based. Consequenty, it has the potential of being

much faster than earlier design.

Specifially. our systolic design rule checker (SDRC) checks for spacing and

width errors. The design may be extended to include other design rule checks.

Our design points out the potential for systolic systems in design automation
applications.

Z. PaIygas and Mm"

In arriving at our SDRC, we made several assumptions on the nature of the
polygon to be handled and also on the type of errors to be checked for. First, we

,. ,.,,:,, .. ,, :.,, -,,. .. '..,,'..,,. ,.;,:.,j , .. :,.. :.'. .,,.,,.,. , . -. .-.. ,-.

assume that polygons are composed of horizontal and vertical edges only.

Hence, only right angled bends are permitted. Polygons may contain holes.

These holes are also restricted to be polygons with right angled bends. Figure
shows two example polygons that satisfy these restrictions.

This restriction on the edges composing a polygon allows a compact

representation of each polygonn. This representation consist of the following:

1.. 1VSon nmber. Each polygon is assigned a unique number. Holes withn a

polygon are austswd the same number as the eaclosuig polygon.

2. A seguatce of polgon waticas. This sequence begins at the lowermost left

hand vertex of the polygon and is obtained by traversing the polygon so that

its interior lies to the left of the edge being traversed. Since all edges are

either horizontal or vertical, the polygon vertices (except the first) may be
described by providing a single coordinate. Thus, the polygon of Figure !(a)

is represented as:

p. IL Z,. YI. me. Va. 2,. Va. X6. Y, 2. MI.

The first symbol p identifies this as an enclosing polygon. n is the polygon
number. In case of a hole, an h Is used in place of the p. Holes are traversed

such that the the Interior is to the Left of each edge traversed. The representa-

tion for the polygon and holes of Figure 1 (b) is:

p. n. cl. V1. 2s, Vs. z4. yV. ze. V7, zo. V. Zte. V. 21. 1,

h. a. x1. V5* . Vyl. Zji. vI~T.2z18. Vii. zo. vis

h. n. Zs. Va. sas Va. Ze. V . ol

The SDRC assumes that the polygons are well formed. Specifically. open
polygons (Figuwe 2(a)): polygons with shared edges (Figure 2(b)): polygon

;

ttIIN

Figure 1 Exampies of polygons

-2-

mml

IM_

J

overlaps (Figure 2(c)); and polygons sharing an edge with a hole (Figure 2(d))

are not permitted. While this awumption of well-formedness is not essential to

our disscusslon. It enables us to concentrate on spacing and width issues. A

minor mod1dcatoA to our design allows the SDRC to check for above malforma-

tions. Also. these inconslstencies need to be explicitly checked before one can

apply bit map based width and spacing checks.

Let denote the minimum allowable feature width. Figure 3 gives examples

of polygons with width error Noto that many de.gner do not regard Fig.re 3(c)
as an error unless the distance a is less than d. Our SDRC is easily changed to

account for this variation. Note that The polygons of Figure 4 have no width

error evin though they contain some edges less than d.

I LL.~ -!

() (b) () (d)

7Igur 2 Malformed ?olygons

~HZ 7
LJ

(a) (b) (C) (8)

Plgwo 3 Polygons with width errors

i - *d. ,

(a) (b)

F~gure 4 ?olygons with no width errors

-,3-

J~q E~ - .-.

. ,,,- . -, ' ,'t, .' , ';€:,": f ' .,':'-:,','..,. . ..;""; ,-'; ," :".".-'-' '"';"-" , . : ,o .:.:. *_ .. , .. ,'" " '""--" "" •"-.-,"".,.- ._* " '-'::":":'::'

J

Let s denote the minimum allowable spacing between polygons. The ploy-
gons of Figure 5 have space errors at the points marked *

An in the ae o Figure 3(c). the configuration of Figure 5(c) Is often not
considered erroneous unless the distance labeled a is Less than s. This change is

also easily made in the SDRC desimg

A& 3. S k ettee4

The SDRC is a hardware device that may be attached to a comput.er system

as a peripheral Figure 8) or directly to the CPL as in case of a doating point

processor.

A block diagram of the SDRC appears in Figure 7. The major components of

an SDRC are two systolic sort arrays (SAX and SAY), controllers for these sort

arrays, and a design rule checker (DRC). Let us assume the configuration of Fig-

ure 6. When design rule checks are to be performed. the CPU sends the compact

descriptions of the polygons to the SDRC. This description is transformedinto

explicit edges by the controileers for SAX and SAY. Horizontal edges are

created by the cotroler for SA and inserted into SAX Vertical edges formed by
the controller for SAY and inserted into SAY. The sort arrays sort the edges into

"

Mb W

Figum 5

-4-"

I t,

Ljr~...

Figure 7 5DRC Architecture

lexical order. Thus. the SAX sorts edges by y - coordinates and within y - coordi-
mate. by x - ecordinate. Recall that we have assumed that there are no overlap-
ping edges. So. even though every horizontal. edge has two x - coordinates, there
is a unique Lexical ordering for the borizontal edges. Similarly there is a unique
ordering for the vertical edges.

As we shadl see in the next section. the SAX and SAY are simply systolic
priority queues. Consequently, as soon as the edges have been formed and
entered into the SAX and SAL, they may be transmitted in Isidcal order to the
DRC. First SAX sends its edges to the DRC, which examines them tor width vtola-
tions In the y direction and spacing violations in the x direction. All detected
errors are transmitted back to SAX Next SAY transmits its edges to the DRCU
which examines them for width errors in the x direction and spacing errors in

the y direction. These errors are sent back to SAY. The errors collected in SAX
and SAY may then be communicated back to the CPU.

CMeary, by using two DRCa. the horizontal and vertical edge processing may
be offecttveLy overlapped. Further. by providing a data path for the errors to go
directly from the DRC to the CPU. the use of the SDRC may be pipelined.

4.Edge Farmin

The descriptor for each edge formed in sort array controllers consists of 5
delds: as shown in Figure 13 The terminology used in this Figure is with respect to
the horizontal edges. y is the yr - coordinate for the edge; zk the left x coordi- r
nate; z,. the right coordinate, p#f the polygon aumber-; and ud (up-down) is 0 if
the interior of the polygon is above this edge and I. otherw-ise. In case the DRC -

sends errors back to the SAX rather than directly to CPI:) then each edge
descriptor will have two additional bits to record t he error. For vertical edges we
may use the terminology of Flgure 9 where x Ls the x coordinate of the edge:, yj,
and yj are. respectively, the bottom and top y coordinates; p# is the polygon

:A

V- 71.7w~

ximber and Ir (left right) is 0 if the polygon interior 's to the left of the edge

and is 1 otherwise. The p# field is used only to identify polygons with errors. This
Ield may be omitted and the detected errors can be associated with polygons by

performing a search at the end.

Example 1: The edge descriptors for the horizontal edges of the polygon of FIg-

ure 10 ar:

-t. Z. t, 1. 0

Vt. - Za. s 1.0

V.4,i, =1a, -. 1
Vl. e. =g. .I

VOS 24. Zg, 1. 1

The descriptors for the vertical edges are:

X2. . s. 1. 0
28. . . .
m. V12. Yw, 1. 2

xig. Via. Y14. 1. 0
25. V. Ya. 0

Mg~Ure 9

WTI

Tbe transformation from the compact polygon representation to the edge
descriptors is relatively straightforward.

The Sort Arrays

While the sorting algorithms have been considered for hardware iznplemen-
tato. THOMB2]). priority queues appear tp be best suited for our sort applica-.-

tioc& Two systolic implementations of priority queues appear in Literature. One
is due to Leiserson [LIS79], and the other due to Guibas and Liang rGTIB82].
WhIe design of [GUIB82 is simpler than that of [lIS79]. it permits an
insert/delete every four cycles as opposed to once every two cycles for the
design Of CLMS79].

The systolic priority queue of '1l7Jis a linear array of processors 'PEs)
each having two registers A and B (Figure 11). Each register in the priority
queue is large enough to held edge descriptor. The array of processors pulsates
in regular cycles 'with instructions:

'6Y4 1373

Itgurs 10

- -~ Al . --

_ I.°

Figute L1- S A X and controller

Flo" 11

-7-

N''-

1.I

Z Ordr Aj-1. A -, so that

being performed for odd i in odd cycles and for even i (i #0) in even cycles. A
new edge can be inserted in the array just before every odd cycle by setting 8 0
to the edge descriptor and Ao to -

When all the insertions have been performed. the edges can be extracted in

the lexical order by setting A0 and B0 to + -. It takes two cycles to extract each
edge. The edges can be sent to DRC one by one as extracted, thereby overlap-

ping the extraction process and DRC operation.

The rem-aning details for SAX and SAY may be found in LS79].

The IH

The DRC is invoked once for horizontal edges and once for vertical edges.

Since the processing that occurs with horizontal edges is the same as that for
vertical edges. our discuuuion of the DRC is confined to the case of hortzontal

edges-
As mensloned earlier, when processing the horizontal edges, the DRC.

checks for width violat ons in the y direction and spacing violations in the x

direcUti. In additlon, the spacing and width checks of Fgure 12 are also per-

formed.

The DRC (FIgure 13) is a linear systolic array with the same organization as
the priority queue of Figure 11. The A and 9 registers of each PE are however
larger. In dmribing the fields of a register, we shall use the notation A(i].x to
mean feld x of register A of I. Each register in the DRC has all the delds

I ";rU

FI.._1

% - .

'1

necessory to describe an edge(Figure 8). In addition. the following delds are

also present:

PR.. This is a two bit priority field used to control the dow of data in the A

and B registers. The four possible values assignable to PR have the fol-

lowing interpretation:

PR = 1: This signifies an empty register. If ud = 0. then this Ls an
empty register to the ngiht of the r4tmnost ed4e(i-e edge
2.: of Fgure i4) in the DRC- if ud- , then this is an empty

register to the left of the rightmost edge in the DRC.

PR = :0: The register contains an edge that has yet to settle in its

place.

PR = 01: This value is possible only for an A register edge. It denotes

an edge that has settled

PR = 00: Denotes an edge for which an error has been detected.

WE.. A I bit width error 6.eld. It is set to i if a width error invoivLng this

edge has been detected.

SE. A I bit space error deld that is set to when a spacing error involving
this edge is detected.

rightok.. A 1 bit eld. This is used only for edges with ud =0. Let X. Y IJA. 4.
)l].rightok = i 1ff there is a j 3uch that

(Xqi].P# = yfjiP# and 4i].z, = Yfjzi and
Y[J-ud = 0)

/, g-. Used in conjunction with rightok. Gives the y-value of the edge that
sattsdes the condition of rightok

leftok.. A I bit field that is used only for edges with ud = 1. Let x e JA. 91.
Xqi].leftolc iff there is a limb at the leftand of the edge ','igure
5(b)).

-. -Figur 13

x".. When leftok = 1. x," gives the leftmost point of the edge. Since edges

may get split during processing. xz may not equal z, (z: wil be the

current left end of the split edge. Since the rightok and yu delds are

used only when ud = 0 while the leftok and zoo felds are used only when

ud = 1. thes ields may use the same physical register space.

It is assumed that all polygons are to be embeded on a rectangular chip

(figurre !4). Thus during processing for horizontal edges. the edges . .2,

2. ., and 2.2 are loaded in the SAXThe odges I and "2 onme nut of SAX before

any other edges in the layout; whereas the edges 2.:. and 2.2 come out in the

end. The DRC is Initially loaded with the edge 2.1 for processing edges from SAX

and the edge 3. ! for processing edges from the SAY.

At the start of each cycle of the DRC, an edge is inserted in B0 . This edge

has PR = 0, andWE = SE = O. Since edges come fromS A (or SAY) only once

every two cycles, the cycle time of the DRC must be at least twice that of the

- sort arrays. Once the edge enters the DRC at B0. it moves towards the right until
it finds its correct position with respect to the edges in the A registers. The A

register edges are ordered by their x values. As the B register edges move to

the right. width and spacing checks are performed against the A register edges
in the PEs adjacent to the one the edge is to settLe into. Once ail Lh hoizontai

edges have been entered into the DRC, we set BrO].PR= t . B O].L'D and

A(O].PR = 1i. This will cause the detected errors to move to the left of the DRC

from where they may be removed and sent back: to SAX or the CPU.

The basic cycle of the DRC s described in procedure cycle.

Before specifying the details of the stp 'PtOESCIDLECH=P' we

describe a few procedures used for Lhis purpose.

6&1 Procedres UudFelrfUdh and Spesci Cheeks

'Flgm 1i

-10-

'] ' ;:', :' ", .. :' ,. .. ,. ,, , ,,, , ,. ,-. .,, ,..*,. . . . ,

procdurecycle
1plsAtikgr Cycle of the systolic DRCJ

sitB ed~ges right
far a jPE I i <n c

0 - - ~ ne0, edg-e.0.0.

0 O-(PRzt.z, WE. SE. LT 4 ,-.0
CSLIMLEACH-..E described later

shift A edges as needed
for ever Pdo

thanI mak Ias right of rightmost edge
if l1P=f't.R=Uad~')UD = 0 .

end
frodd I on odd cycles and

even I on even cycles 4o
if .A(i].PR > Afl*:-;] .PP

then Afi] *- ALI+:,]J interchange edges
and

until faine infinite loop
and cycle

31 ! Li

Inis is used by a PE that contains an edge in its A register that is to Lb. right of
the edge in its B register. Figure i15 depicts two of the situations when the check
is performed.

procdurespacecheck 1.

then r.A.SE 4- .!;B.SE 11
end spacecheck 46.

1~iscet3 edge

s egscer edg aiEgeJy

Figure 15

_- K7

%..

4W0ho 1.2

This is sinilar to spacecheck 1.! except that the B register edge is to the right

of the A register edge.

procedar spacecheck 1.2
ff B. j - Azx, < s ..

tha .SE .. sE -:

end spe cechck :.-2

This is used to check the interlimb distance in polygons (Figure 18). As edges

progress through DRC. they may get broken. So, the edge in a register may

actually be only a segment of a larger edge. The leftmost point on the original

whole edge is 'remembered' in the deld z6W which takes the place of the y.

(zw is used when UD = 1 whiley,, is used when LTD = 0).

proeub spacecheck2

If B.z-. -B.z. < s
then B.SE 4- 1

end spacecheck2

dlfdthahecki

This is used when the A and B register edges in a PE belong to the same polygon;

have some overlap: and A.UD 0 a and B.UD : 1. Figure 17 depicts a possible

situation.

procsdnr wtdthcheck!
ff By -Ay< d

3 adge

jedg is broks -AC

* I*-?

Figure 16 InLerLimb dLvsance

-12-

- -. -- .- -

W7. -7.. .- .. .

Iv 71:

_3 edge

FIgure 17

tbhenEA.WEe 1; BYWE -1

end wdthoheckI

The widthcheck performed by this procedure is shown in Figure 1.8. The PE that
performs this check has edges in A and B registers that have the same polygon

numbers; A.UD = 0 and B.UD = 1; and A.rghtok 2..

p euwidthheclk2

end widthcbeck2

6.2 PR M £LACW P

In this step of the cycle. each PE examines the edges in the A and B reis-

ters and performs the checla based on this. In order to understand the edge C,.

processing procedure to be outlined shortly, it is necesscry to keep the following

In mind.

3.7'- .

7 r~ght

A &dge

-13-

4- - - - . - C- *

~ - ~~ ~ *.'.-C,**.- - . -C

1. Edges may settle only In A registers. Thus,

B.PR 01 for any PE

Z Edges that have not yet settled must do so by moving to the right via B
registers. So. the case A.PR = 10 is not possible.

3. Settled edges are ordered by their x values left to right in the A registers.
The sequence of settled edges (L e., PR = 01) may be interspersed with
error edges %L e.. PR = 00) and empty edges (L. a.. PR = 2-).

4. A polygon edge may get spilt during processing. FIgure 19(a) shows a
polygon with a hole in it. When edge e is the B edge in the PE contai nin the
edge acd in its A register, the and adge is split into the three segments a. c.
and d. The segments a and a are discarded. In the case of polygon in Figure
19(b). the edge e causes the edge ac to be split into segments a and a. The
segment als discarded as no new errors with respect to this segment are
possible. All errors detected for the edge are retained by the segm*nL

In general, edge splits and discards are carried out so as to ensure that the
set of active edges (i. e., PR= 01 or 10) have no overlap of their x coordinates.

The exact mechanism by which width and spacing errors are detected is
best described using algorithm' notation below.

axe A.PR a
00 : j A edge has an error. do nothing

10: j A adge has't settled. This is not possible. Only B edges
may have PR = 10

A3 edge

AA edge

F4PM 19

-14-

* f -~~~~~~~~~~~~~............ ,..,--.-.-.-....

.. . 4 1 .-- .*-. *- .*'- "
•

.- **- ---- *** *

11: A register is empty

-sw B.PR of
00. A -- B Move error edge to

empty A register

01: Not possible as edges can

settle only in A register

10: it AUD = 0
tUn JNC edges to the right ofPE i

[B.PR - 01; A -- BI

B edge must settle here

-- 11 jdo nthing~
and =e

01: A edge Lsin its correct place 0

inoa Ri of
1 do nothing

00 ae0d : not possible I

10 : casisA.UD at C

At this point A-K = 01, S.1'k = 10, A.UL) -0.

The interior of the polygon is above the edge A.

-15-

... ~ .".-~*:C

|Determine the relationship between the A and B edges

1: Azj x- Br,.:

IWe have the situation of Figure 20

it B.UD = 0
than Wigure 20(a)i

[d B.zr, = .
then j By assumption on the polygons

(Flguurs 2) B.p# A-p#~
[B.rghtok .- 1; B- "- Ay]

eLm j B.P# <> A.P# or B and A are

ftrom two limbs of the same polygonj

spacwheck. I

ndf

IThis is B's place to settle j
A.PR - 10; B.PR - 01; A .B

Notc that when B.UD a. no checks nccd
be performed as relevant checks were

performed when the A edge was settle

3 0460

'______________ i// i :////I//I//,~ ~ ~ ~ 7 7//////l//l' // // -17 7

a ed ges . 4ds6

a 3 • d - .

(a) b

-16-

.. 1',- . \: ,#'P , 'd.K , ,r,, , . ,. ,.; •"..'.**',,' '., , . .. _'.

2: A.,B. :

This situation is depicted in FIgure 2!

f BUD a 0
Unm 1Figre 21(a))

If A= B.A

thn By assmption on polygons (Figure 2)

B.p# = A #

elm spacecheckl.2

endif
else F gure 21(b)"

if A.z, = BA and not B.leftok
then I Figure 21(c). Set leftok and zw

In case limb test Is needed. B edge

may get split lateri
[B.leftok - 1; Bzw 4- B-t

if A.rtightok

than Figure 21.(c). A width chock is nccded.
if (B.y -A.y < d) and
(B.2% - A.T,) < d "

ta &WEi]
mm

3: elm: A and B edges bave some overlap and so

must be part of the same polygon. Hence
.U lg.11ure 22 -20 snow some cases.

Note thatA.z1 i B-A < A,.-

The case B.:1 < A.j Ls not
possible as this would have caused
caused B edge to be split earier,

leaving B.z= A.,

-17-

A OdW~ I e. c edg

CC) m . * -

Pi'gure%7

illU/f llI ll

/I/l/Ifl/l/l -- ([1111111111 _________'___

AA Aw 2

/ Ill/ I / I/I ll im

.,..

|-1.8-

.' I ii

/a, ,,/r/l,, "777777/77 /// ,

(a) (b) j

J1gure25

3.:: A. a B.A fF'igure 221

3.1.1: Az,. = B.z. :iigure 2%a)i

It A-rightoac
then jFigure 23~

£widthcbacc2
it B.leftok
then J Figure M(c)

change stabu of A edge
I2.A.WE arA.SE
tn APR 00
elm C.A.PR .- 11; A.TJD -1]

11.. " < B.e,, : I FLtgu," 24J

spit B edge and put left part in A.
note that if there is a left limb of B.
B.leftok and 3.-r, were set in case 2.
(see Figure 21(b)J

.I

-19- '
*1

I

t l 1 1 g ~ i ' . € ' ': ,% : ' , , ' -; , ' . P ' n ; L : b ' : . f , ,- ' .I - -

.1 . R-1 -3 . -. -. - . - - -

3a13: A.:7> Baz 7 Fitgure 251

If Arightok
then JFIgure 25(b)I

f wdthcheck2]
if B.Lettok
then j Figure 25(c)~

£spacechecla '

spit A edge
A-zt ~- B.z,.

Thzis is Bs place to settle
A -- B: APR 4-01; B.PR 4- 10

3.2AA < Bzgigure 26 - 2a

There is an up'ward limb at the Iseft of B

3-2-1: A.z, = B.:j FIgure 2Sj
9 Arightok
then J1'lgures '26(a) and (b)I

Cwidthchack2; spanctc2]

split A edge
A. BAz; Arghtok~ 0

3.2.2: >~, B-z,.: [Figure 27(a) and (b)j
The situation depisted in Figure 27(c)
is not possible as the A edge would
have been spit at Br when
edge a went over it
if Arirghtok
thm Figure 271,a) j

widthchelc"2

spaoeeheck2 f must be a limb .
split A edge discarding the segment

Am& to Rg

A~j - B.z,.

split A and 8 retaining segments

b and d. (Figure 28)1
A. rightoku- 0

(" ,Bq) ',Bz,

This ends the case A.UD =01

Begin last case to consider 1

4: A.UD a 1:
At this time. A.PR = O1 B.PR = 1O, and AUD =

A .II , 1 A .I.
(a)m: !11'i,'7 "4

,- "t a ... tbo .I7

-I'.i

i Vit

FW=

_____ i h

(a) (b)(a)

31-

Ifw B- -X~ s - -- ~-

then remaining edges are too far
from A to cause errorsi

(dt A..WEor ASEi them A.PR '-00
also .PR

cam

4.:kgz B.,: JFigure 29J
If not B. UD= I an~dB.x4 =A.A)

then
rA.SE.-1 B.SE -:V

This is BHs place to settle
A '--. XAPR ~- 01: B.PIR - !.0

4-2:A., : SB-z,:Fi. Nue 30j
if not B-UD =and B. x =Ax2

ar B.z1 - B-z, - s]

(A.SE~~~ - ;SSE-1

4.3:ele: Partial overlap (Figure 31). So, B.tUD = C

A.SE - 1; B.SE - 1

4.3.:: B-z. < A.J.Figure 31(a) and INb)
split kj

A.zt '-B.z,
A .-- 9: APR '-01; H.PR ' 0

4.3.1: B-z, L- Ax., :JF!Sure 311c) and (d)j
A.PR -00

-23r

Mhe rermaining spacing errors involvtng the left
part of the A edge in Figure 31(b) and (d) will

be detected when handling vertical edges

andn -am
nd

6.3 Performance

Under the assumption that the sort arrays and DRC are large enough to
accommodate all the edges, the sort time and the DRC time Ls linear in the
number of the edges in all the polygons. Furthermore the time spent extracting
the errors from the sort arrays is effectively overlapped with the DRC process-

* In practice, of course, no matter how large the sort arrays and DRC. there
will be times when the number of the edges to be handled will exceed the capa-
city, of the systolic arrays. In these circumstances, the layout may be narti-.
tior-ed into vertical slices for SAX and horizontal slices for SAY (Figure 32). By
ensiuing that adjacent slices overlap by at least rnax~s. di we ensure that no
erroneous reporting will occur. The checks may then be performed for each
slice in~lependently.

7. Conclusions

We have demonstrated the potential of systolic architectures in the design
automation field. While our design of a DRC several simplifying assumptions.

1 3

-

a) *, tlat LW)'*ico -

these may be relaxed at the expense of the increased complexity. In particular,

the assumptlons about well formed polygons (Figure) and Manhattan vs
Eucideen distance (Figure,-1--e trivially removabe.

[,ABRA2] X. AbramovicL. Y. H. Levendel, and P. R. Menon."A Logic Simulation
Machine" ACM IEEE Nneteenth Design Automation Conference

Proceaedings pp 65- 73

[BLAN81] Tom Blank, Mark Stefk, William vanCleemput "A Parallel Bit Map Pro-
cessor Architecture for DA Algorithms" ACM IEEE Eighteenth Design

Automotion Coneenwce Proceedings pp 837-845

rDENN82] 1. M. Denneau. "The Yorktown Simulation Engine" C IEEE
Ninetenth Design Automaton Conference Proceeadigs pp 55-59

[CLUT82] Leo J. Cuibas, Frank X Liang. "Systolic Stacks. Queues and Counters"

196M Conference an adwnned Research ft VLSI, M. .7.

-XRON82] E. Kronstadt and G. Pfster, "Software Support tor the Yorktown

Simulation Engine" ACM IEEE Ninteenth Design Automation Confer-
ence P4Evceedigs pp 60-64

[KL'NG82] H. T. Kung. "Let's Design Algorithms for VLSI Systems" CMU-CS-79-
152 Department of Compter Scizence, Carnegie Melt~n Ckniersit

(MUDG82] T. N. Mudge. It A. Ratenbar. R. L Lougheed. and D. E. Atkins. "Celu-
lar Image Processing Techniques for VLSI Clrcuit Layout Validation

and ROuting" ACM [EEU A*ntehm Design Automation Coference

Proeaadgs pp 537-543

[NAII=2] I. Nair. S. Jung. S. Lies. and P. Vllani. "Global Wiring on a Wire Rout-
ig Machine" ACM I= Nineteenth Design Automation Conference

Poceaefigs pp 4-231

[LES]79 C. E. LEaLserson. "Systolic Priority Queues" Proceedngs of Conference
on VLSI: Architecture, Derign, Fabrication CaLiforTca Institute of
Taamotiogy LTw' 79pp 199-214

(P71582] G. F. Pfster, "'"Me Yorktown Simulation Engine, Introduction" ACM
IEE Ninetemnth Design Automation Conference Proceedings pp 51-

54

(SEIL82] L Seller. "A Hardware Assisted Design Rule Check Architecture" ACM
IfEEE ,fineteenth Design Automation Conference Poceedngs pp 232-
238

-25-

(THOM82] C. D. Thompson. '"he VLSI Complexity of Sorting" UCB ERL M821/5
ElecAonws Reamrch Laboraory, College of EE& nermg. Berkeley.

LcuwtjarftS

]UEDA83J Kazubiro Ueda. Tsutomu Komatsubara and Tsutomu Hosaka, "A Paral-
le Processing Approach for Logic Module Placement" ACM IEEE 7'Tr-

sactions an ComUter Aided Design %L. CAD-2 No. 1 rfan.83 pp 39-47

.,

. .. -- ..- --- -

.•.. ... i ... "

- CUAITY CLASSIFICATION OF THIS PAGE (When Dole Entered)
:'"-:::READ INSTRUCTIONSREPORT DOCUMENTATION PAGE RE CMLTRNCTORM
..... BEFORE COMPLETING FORM

. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENTS CATALOG NUMBER

TR 83-13 s.P
4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

July 1983
Technical Report

" o e R e6. PERFORMING ORG. REPORT NUMBER--:--'T:.*i"A Systolic Design Rule Checker"

7. AUTHOR(#) 6. CONTRACT OR GRANT NUMBER(#)

I.1

Rajiv Kane, Sartaj Sahni N00014-80O--&J
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT TASK

AREA & WORK UNIT NUMBERS
Computer Science Department
University of Minnesota
136 Lind Hall, 207 Church Street. S.E. Mpls _ ___

,Ir CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of the Navy July 1983

Office of Naval Research 13. NUMBER OF PAGES

Arlinston. Virginia 22217 26
N .NTOIG AGENCY N, & AODRESS(I dif.ent from Controlling Office) IS. SECURITY CLASS. (o. thie report)

UNCLASSIFIED
IS.. DECLASSI FICATION/DOWNGRADING

SCHEDULE

I. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTICTI STTTT:7: '7T A
Approved for public reloase,

Distribution Unlimited I
.A 17. DISTRIBUTION STATEMENT (of the abstrect entered In Block 20, If different from Report)

i. SUPPLEMENTARY NOTES

..ll.

19. KEY WORDS (Continue on reverse side It neceeary and Identify by block number)

.. Design Rule Checks, feature width, spacing rectilinear geometries,
"I. systolic systems.

20. ABSTRACT (Continue, n reverse aide It neceeeey end Identify by block number)

We develop a systolic design rule checker (SDRC) for rectilinear
geometries. This SDRC reports all width and spacing violations. It is
expected to result in a significant speed up of the design rule check
phase of chip design.

DO I FNT 3 1473 EDITION OF I NOV5 IS OBSOLETE
S 'N 0102.LF-014- 601

. .CUPITY r!.AtFrICATION OF ToIS PAGIE r*7rn Does E t-eof)

V,.

OPN -p

FILMED

DTI

Of' . I

